SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets

نویسندگان

  • Hongliang Mao
  • Hao Wang
چکیده

Motivation Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Results Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. Availability and Implementation The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan , implemented in PERL and supported on Linux. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RetroPred: A tool for prediction, classification and extraction of non-LTR retrotransposons (LINEs & SINEs) from the genome by integrating PALS, PILER, MEME and ANN

The problem of predicting non-long terminal repeats (LTR) like long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) from the DNA sequence is still an open problem in bioinformatics. To elevate the quality of annotations of LINES and SINEs an automated tool "RetroPred" was developed. The pipeline allowed rapid and thorough annotation of non-LTR retrotranspos...

متن کامل

Distribution, Diversity, and Long-Term Retention of Grass Short Interspersed Nuclear Elements (SINEs)

Instances of highly conserved plant short interspersed nuclear element (SINE) families and their enrichment near genes have been well documented, but little is known about the general patterns of such conservation and enrichment and underlying mechanisms. Here, we perform a comprehensive investigation of the structure, distribution, and evolution of SINEs in the grass family by analyzing 14 gra...

متن کامل

Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome.

To test whether regions undergoing genomic imprinting have unique genomic characteristics, imprinted and nonimprinted human loci were compared for nucleotide and retroelement composition. Maternally and paternally expressed subgroups of imprinted genes were found to differ in terms of guanine and cytosine, CpG, and retroelement content, indicating a segregation into distinct genomic compartment...

متن کامل

Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes.

Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-leng...

متن کامل

A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells.

Germline cells reprogramme extensive epigenetic modifications to ensure the cellular totipotency of subsequent generations and to prevent the accumulation of epimutations. Notably, primordial germ cells (PGCs) erase genome-wide DNA methylation and H3K9 dimethylation marks in a stepwise manner during migration and gonadal periods. In this study, we profiled DNA and histone methylation on transpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2017